PhD Thesis: Differentially Private Synthetic Data Generation for Mobile Money Fraud Detection
Abstract
Coming soon...
Azamuke, Denish, M. Katarahweire, and E. Bainomugisha. 2025. “A labeled synthetic mobile money transaction dataset,” Elsevier Data in Brief, 2025. Article link.
Azamuke, Denish, M. Katarahweire, and E. Bainomugisha. 2024. “MoMTSim: A multi-agent-based simulation platform calibrated for mobile money transactions,” IEEE Access, 2024. Article link.
Azamuke, Denish, M. Katarahweire, and E. Bainomugisha. 2025. "MoMTSimDP: A Differentially Private Simulator for Mobile Money Transactions," 2025 IEEE/ACM Symposium on Software Engineering in the Global South (SEiGS), Ottawa, ON, Canada, 2025, pp. 53-58, . Article link.
Azamuke, Denish, M. Katarahweire, and E. Bainomugisha. 2023. “Financial fraud detection using rich mobile money transaction datasets,” In Towards New E-Infrastructure and e-Services for Developing Countries. AFRICOMM 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Article link.
Azamuke, Denish, M. Katarahweire, J. Muleesi Businge, S. Kizza, C. Opio, and E. Bainomugisha. 2023. “Refining detection mechanism of mobile money fraud using MoMTSim platform,” in Pan African Conference on Artificial Intelligence, Springer, 2023, pp. 62–82. Article link.
Azamuke, D. et al. (2025). “DeepFakesUG: Detecting Counterfeit Ugandan Banknotes Using Deep Learning." In: Girma Debelee, T., Ibenthal, A., Schwenker, F., Megersa Ayano, Y. (eds) Pan-African Conference on Artificial Intelligence. PanAfriCon AI 2024. Communications in Computer and Information Science, vol 2550. Article link.
Azamuke, Denish, M. Katarahweire, and E. Bainomugisha. 2022. “Scenario-based synthetic dataset generation for mobile money transactions,” in Proceedings of the Federated Africa and Middle East Conference on Software Engineering, 2022, pp. 64–72.2022. Article link.
Coming soon